« PREPRINT: Structured Convolution Matrices for Energy-efficient Deep learning | Main | Demo at Conference on Computer Vision and Pattern Recognition »

Gearing Up for 2016 Telluride Neuromorphic Cognition Engineering Workshop

Guest Blog by Andrew Cassidy and Rodrigo Alvarez-Icaza

Gearing up. We are preparing for the 2016 Telluride Neuromorphic Cognition Engineering Workshop, in the Colorado mountain town. Beginning Sunday Jun 26th, this annual workshop brings together nearly 100 researchers from all around the world to investigate brain-inspired solutions to topics such as:

  • Decoding Multi-Modal Effects on Auditory Cognition
  • Spike-Based Cognition in Active Neuromorphic Systems
  • Neuromorphic Path Planning for Robots in a Disaster Response Scenario
  • Neuromorphic Tactile Sensing
  • Computational Neuroscience

IBM's Brain-Inspired Computing Group is sending two researchers with an end-to-end hardware/software ecosystem for training neural networks to run, in realtime, on the 4096 core TrueNorth neurosynaptic processor. The Eedn (Energy-efficient deep neuromorphic network) training algorithm enables near state-of-the-art accuracy on a wide range of visual, auditory, and other sensory datasets. When run on TrueNorth, these networks can be run at between 25 and 275mW, achieving >6000 FPS/W performance.

We are bringing (Figures 1-3):

  • 16 NS1e boards (each with 1 TrueNorth neurosynaptic processor)
  • 1 server (with 4 Titan X GPUs) for training deep neuromorphic networks
  • and a bucket of cables.
Building on the successes from last year's workshop, and leveraging the training material from Bootcamp, our goal is to enable train, build, and run for workshop participants. Combined with real-time runtime infrastructure to connect input sensors and output actuators to/from the NS1e board, we have all of the tools in place to build low-power end-to-end mobile and embedded systems, to solve real-world cognitive problems.

Figure 1. Sixteen NS1e Boards
Training Server
Figure 2. Training Server and Gear
Prep Station
Figure 3. Prep Station
Photo Credits: Rodrigo Alvarez-Icaza


TrackBack URL for this entry:

Post a comment

(If you haven't left a comment here before, you may need to be approved by the site owner before your comment will appear. Until then, it won't appear on the entry. Thanks for waiting.)